The First Dirac Eigenvalue on Manifolds with Positive Scalar Curvature

نویسندگان

  • CHRISTIAN BÄR
  • MATTIAS DAHL
چکیده

We show that on every compact spin manifold admitting a Riemannian metric of positive scalar curvature Friedrich’s eigenvalue estimate for the Dirac operator can be made sharp up to an arbitrarily small given error by choosing the metric suitably.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Bounds for Dirac Operators on Open Manifolds

We extend several classical eigenvalue estimates for Dirac operators on compact manifolds to noncompact, even incomplete manifolds. This includes Friedrich’s estimate for manifolds with positive scalar curvature as well as the author’s estimate on surfaces.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A universal lower bound for the first eigenvalue of the Dirac operator on quaternionic Kähler manifolds

A universal lower bound for the first positive eigenvalue of the Dirac operator on a compact quaternionic Kähler manifold M of positive scalar curvature is calculated. It is shown that it is equal to the first positive eigenvalue on the quaternionic projective space. For this, the horizontal tangent bundle on the canonical SO(3)-bundle over M is equipped with a hyperkählerian structure and the ...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Remark on the Limit Case of Positive Mass Theorem for Manifolds with Inner Boundary

In [5] Herzlich proved a new positive mass theorem for Riemannian 3-manifolds (N, g) whose mean curvature of the boundary allows some positivity. In this paper we study what happens to the limit case of the theorem when, at a point of the boundary, the smallest positive eigenvalue of the Dirac operator of the boundary is strictly larger than one-half of the mean curvature (in this case the mass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008